Visualization-informed noise elimination and its application in processing high-spatial-resolution remote sensing imagery

نویسندگان

  • Yu Qian
  • Fang Qiu
  • Jie Chang
  • Kang Zhang
چکیده

Noise removal is perhaps one of the most fundamental and challenging tasks for extracting useful information from a spatial data set. One of the challenges is that there is no general agreement on the definition of noise that can be universally applied to all different domains. This paper proposes a novel technique called Visualization-Informed Noise Elimination (VINE) to support a customized noise removal through incorporation of domain knowledge. The VINE technique consists of three steps of consecutive operations. First, a k-mutual neighbor graph is derived from a spatial data set to model the spatial proximity among data points. Next, a fast partitioning method is employed to reassemble graph nodes into groups. Last, a 3-dimensional (3D) visualization model is created to provide a layered view of the partitioned data, which allows an informed identification and elimination of noise by tailoring to the requirements of a specific domain. The flexibility and customizability provided by this novel technique ensures an effective differentiation of noise from valid data and demonstrates various advantages over traditional methods with improved results. When adapted in post-classification smoothing of high-spatial-resolution remotely sensed images, this approach was able to discover and reassign noise (such as shadows often seen in high-spatial-resolution images) to its proper target class. By incorporating domain knowledge and making use of spatial contextual information, the VINE technique could produce results significantly superior to existing approaches such as majority filter and size-based noise removal. r 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Satellite Remote Sensing Systems and its Application in Archaeology Case Study: Behshahr Plain- Mazandaran

Human groups have considered the Behshahr plain of Mazandaran in the past Due to its particular geographical shape, location between the Caspian Sea and mountains, and the existence of some rivers in the region. However, our knowledge of this area is limited to several published surveys and archaeological investigation of its ancient sites. No detailed research has conducted on the formation of...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Investigating Alteration Zone Mapping Using EO-1 Hyperion Imagery and Airborne Geophysics Data

Hyperspectral remote sensing records reflectance or emittance data in a large sum of contiguous and narrow spectral bands, and thus has many information in detecting and mapping the mineral zones. On the other hand, the geological and geophysical data gives us some other fruitful information about the physical characteristics of soil and minerals that have been recorded from the surface. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2008